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ON THE POSHEKHONOV PENDULUMt 

A. S. S U M B A T O V  
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The Amontons-Coulomb law, with no additional assumptions about friction, is used to explain the phenomenon of the "jamming" 
of the frame during the first few oscillations of the physical pendulum in Poshekhonov's device. Copyright © 1996 Elsevier 
Science Ltd. 

The Poshekhonov pendulum (Fig. 1) is a frame in which the horizontal axis of a physical pendulum P 
is mounted in bearings. The frame may rotate about its own vertical axis in a stand on the Earth's surface. 
To demonstrate the operation of the device, the pendulum is deflected from the vertical through some 
angle and secured by a thread, which is then burned. 

Depending on the values of the parameters, one observes three types of motion 
1. The pendulum P swings in the vertical plane, and the frame remains immobile throughout the 

motion. Owing to friction in the bearings of the horizontal axis, the oscillations of the pendulum are 
gradually damped. 

2. The pendulum begins to descend, the frame does not move, but at a certain time, before the pen- 
dulum has reached its lowest point, the frame begins to rotate. At a certain time the frame stops and 
the pendulum passes through its lowest point and begins to descend. The pattern is then repeated. Thus, 
during one complete oscillation of the pendulum the frame changes its direction of rotation three times, 
stopping in between. At the same time there is a progressive rotation of the frame in the direction of 
its first rotation. After several oscillations, one of the changes in the direction of rotation of the frame 
is observed at the tiLmes the pendulum P goes through its extreme positions. The oscillations are gradually 
damped. 

In the opinion of the inventor of the device, the motion of the frame as described verifies the daily 
rotation of the EaJrth. 

One more possible type of motion has been pointed out [1]: 
3. "When the Poshekhonov pendulum on show at the Moscow Planetarium is started up, the frame 

first stands practically still (for the first 10 to 50 oscillations). It then begins to move, the nature of this 
motion being gene, rally the same as described above for the case of motion with stops . . . .  " 

Several papers ihave been devoted to the theory of the device [1-3]. In the earliest one [2], the 
device was treated as a mechanical system with two degrees of freedom and ideal constraints, and only 
small oscillations were investigated. Of course, without allowing for friction it is not possible to explain 
the frame's actual motion. Ishlinskii [1], by considering the law governing the variation of the system's 
angular momentum and making allowance for the moment of the Coulomb forces of friction acting at 
the points of the vertical axis of the frame, was able to explain the second type of motion. Finally, some 
formulae in [1] were refined to include the case in which the horizontal axis of the physical pendulum 
P is skewed [3]. 

In the present paper, using only the Amontons-Coulomb law, the third type of motion will be 
explained. 

1. C O N S T R U C T I O N  O F  " S T A G N A T I O N "  Z O N E S  

To avoid having to analyse the effect of the horizontal component of the Earth's angular velocity on 
the device, we shall assume that the experiment is being performed, say, at the South Pole [1]. 

Notation: P = mg is the weight of the physical pendulum, l' is the distance from the horizontal axis 
of rotation to the centre of gravity of the pendulum, k is the central radius of inertia of the pendulum, 
1 = k 2 / l  ' is the reduced length,f is the coefficient of dry friction at the points of contact of the cylindrical 
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Fig. 1. 

pivots of the frame with the surface of the holes, U = 7.3 x 10 -5 cm -1 is the angular velocity of Earth's 
diurnal rotation, and 0 is the deflection of the pendulum from the vertical. 

Suppose the frame is fixed. For simplicity, we shall consider oscillations of a mathematical pendulum 
of mass m suspended on a massless rod of length I. The Coriolis force 2mUOl  cos 0 acts at the point m 
in a direction parallel to the x axis (Fig. 1). The moment Mz of this force about the z axis is - m U O l  2 sin 
20. It tends to rotate the frame in keeping with the motion of the Sun. The moment of the Coriolis 
force about the y axis has no significant effect on the motion, as U is small. 

In relative motion, the point m also experiences a centrifugal force of inertia proportional to U 2 .< 
1, which may be ignored as negligibly small. 

The moment of the frictional forces applied to the frame satisfies the inequality I Mfr I ~< rfN, where 
N is the magnitude of the resultant of the pressure forces exerted by the surface of the cylindrical holes, 
of radius r, on the pivots of the frame. The pressure N is balanced by the horizontal component of the 
force of tension T of the pendulum shaft. Projecting the equations of motion of the pendulum onto 
the y axis, we obtain 

N =1T sin 01 = ml (/02 + g cos 0) sin 01 

By the Amontons-Coulomb law, the moment of frictional forces compensates for the moment of 
the Coriolis force about the vertical z axis as long as the latter does not exceed the limiting value 
rfN in magnitude. Throughout  that time the frame remains immobile. The equilibrium equation Mfr 
+ Mz = 0 defines the "stagnation" zone in the phase plane (0, 0), with the boundary defined by the 
equation 

rfl (102 + g cos 0)  sin 01- U[ 210 sin 201 = 0 

Transforming to a new non-dimensional time variable x = t(g/[) 1/2 and introducing the non-dimensional 
parameter 

r ~ .. (1.1) 

one can write the boundary of the "stagnation" zone in the form 

~,ly 2 + ol - 21yol = 0 (1.2) 

where y = dO/dx, a~ = cos O. 
The curve (1.2) is symmetric about the coordinate axes in the phase plane (0, dO/d'c). It will therefore 

suffice to investigate it in the first quadrant 0 ~< 0 ~< n, y / >  0 only, and there the coordinates of the 
points in the interior of the "stagnation" zone satisfy the inequality 
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kly z + t~ - 2ylt~ > 0 (1.3) 

The rest of the analysis divides into two cases. 

Case ~, I> 1. I fv  ~ 0, the discriminant satisfies the inequalityD = u(~ - ~z) ~< 0, and inequality (1.3) 
holds at all points of the half-strip 0 < 0 < rd2,y t> 0. I f v  < 0, inequality (1.3) splits into two systems 

~,(y2 + V) + 2yu > O, y2 + v > 0 (1.4) 

o r  

X(v 2 + u) - 2yv < O, y2 + v < 0 (1.5) 

We have D > 0. 
The solution of system (1.4) is given by the inequality y > max(y1, Yz), where Yl = (_~)1t2, Yz = (-a~ 

+ D~2)/X. 
The solution of system (1.5) is 

O <~ y < min(yi , Y3 ), Ya = (v + DJ~ ) I X 

Figure 2 shows the boundary (1.2) in the first quadrant for ~ = 2. The "stagnation" zone is the 
unhatched part of the diagram. 

Case X < 1. When v t> 0 we have D I> 0 if 0 ~< 0 ~ arccos(~, 2) and D < 0 if arccos(~, 2) < 0 < x/2. In 
the half-strip 0 < 0 < x/2, y I> 0, only points within the curve 

0>~0, y4 <<- y<- y 3 (y4 =(v -DY' - ) l~ . ) ,  

do not belong to the "stagnation" zone. 
The investigation of  inequality (1.3) for v < 0 is analogous to that in the case ~, I> 1. 
Figures 3 and 4 show the curves (1.2) for X = 0.7 and ~, = 0.5, respectively. The "stagnation" zone 

is unhatched. As the values of  the parameter ~ decrease, the "stagnation" zone becomes smaller. 

2. A N A L Y S I S  O F  T H E  M O T I O N S  

If the system pm:ameters are such that the quantity (1.1) exceeds unity and the initial deflection 00 
of the pendulum from the vertical is less than n/2 in absolute value, then the trajectory of the 
representative point in the phase plane remains inside the "stagnation" zone. The frame remains 
motionless throughout the oscillations of the pendulum, which are gradually damped out (the first type 
of motion). Note t]~at for sufficiently large X values the hatched domain in Fig. 2 shrinks to a curve y 
= Yl; hence this type of motion should also be observed when 00 > n/2. 
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Fig. 2. 
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Interesting dynamical effects appear when X < 1. In particular, for the second type of motion, an 
examination of Figs 3 and 4 provides an explanation of the frame's brief pauses, when the direction of 
the pendulum's oscillations changes. Indeed, as ~. decreases the "stagnation" zone for 101 < 1 shrinks 
to the curve dO/dx = 0 

Y4 =(v - DJ6)l g~= ~.l (2v 2)+ O(~. 3) 

Figure 5 shows the "stagnation" zone (unhatched) for X = 0.95. The closed curve enclosing the points 
(0, 1) and (0, -1) represents the trajectory 

(dOIdx) 2 = 2(cos0 - coseo) 

corresponding to the energy integral of the pendulum when 00 = 1 5 < n/2. 
If there were no dissipation of mechanical energy, the pendulum would oscillate and the frame would 

stand still. However, due to friction in the pivots of the horizontal axis of the frame, air resistance, etc., 
mechanical energy is dissipated. Consequently, the actual trajectory of the representative point goes 

¢... 
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Fig. 5. 
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inside the above-mentioned dosed curve, approaching the equilibrium point (0, 0). If the dissipation 
is slight, the point may perform several full rotations about the origin without intersecting the hatched 
domains in Fig. 5 enclosing the points (0, 1) and (0, -1). However, at a certain instant of time, the 
representative point will enter one of these domains. At that instant the moment of the frictional force 
about the vertical axis will not be able to compensate for the moment Mz of the Coriolis force, and the 
frame will begin to rotate, corresponding to the third type of motion in Poshekhonov's device. 

This research was carried out with the support of the Russian Foundation for Basic Research (93- 
01-16242). 
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